skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chatt, Amares"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, silver nanoclusters have garnered considerable attention after the high-yield synthesis and crystallization of a thiolate-protected silver nanocluster, Na4Ag44(SR)30 (SR, protecting thiolate ligand). One intriguing feature of Na4Ag44(SR)30 is its outstanding stability and resistance to chemical reactions, in striking difference from other silver nanostructures whose susceptibility to oxidation (tarnishing) has been commonly observed and thus limits their applications in nanotechnology. Herein, we report the mechanism on the ultrahigh stability of Na4Ag44(SR)30 by uncovering how coordinating solvents interact with the Na4Ag44(SR)30 nanocluster at the atomic scale. Through synchrotron X-ray experiments and theoretical calculations, it was found that strongly coordinating aprotic solvents interact with surface Ag atoms, particularly between ligand bundles, which compresses the Ag core and relaxes surface metal–ligand interactions. Furthermore, water was used as a cosolvent to demonstrate that semiaqueous conditions play an important role in protecting exposed surface regions and can further influence the local structure of the silver nanocluster itself. Notably, under semiaqueous conditions, aprotic coordinating solvent molecules preferentially remain on the metal surface while water molecules interact with ligands, and ligand bundling persisted across the varied solvation conditions. This work offers an atomic level mechanism on the ultrahigh stability of the Na4Ag44(SR)30 nanoclusters from the nanocluster-coordinating solvent interaction perspective, and implies that nanocluster-solvent interactions should be carefully considered moving forward for silver nanoclusters, as they can influence the electronic/chemical properties of the nanocluster as well as the surface accessibility of small molecules for potential catalytic and biomedical applications. 
    more » « less